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I grew up surrounded by books and a profound sense of deference for education, a practice, which, 
according to Oscar Wilde (1854 – 1900), “makes one rogue cleverer than another,” which, I interpreted 
as the pursuit of knowledge at once esoteric and abstract for the sole purpose of attaining intellectual 
maturity, cultural sensitivity, and social consciousness.  I was equally attracted to literature, 
mathematics, music, and physics and was having a hard time deciding which one of these disciplines to 
study in college.  It was when I was, as a high school student, exposed to the indubitably enthralling 
facts that serious mathematics existed naturally in the universe and that it arose from relatively simple 
situations and reached immense levels of abstraction, that I knew that I was going to study 
mathematics.       
 
My first encounter with the astounding prevalence of mathematics in nature had something to do with 
the tessellation (from the Greek tessera meaning square, derived in turn from the word for four) of the 
plane, that is, a covering of the plane with figures that fill the plane with no overlaps and no gaps.  For 
stunningly ingenious examples of plane tessellations, one should see the paintings of the Dutch graphic 
artist Maurits Cornelis (M. C.) Escher (1890 – 1972)   
 

 
 

Regular Division of the Plane III by Escher  
(http://en.wikipedia.org/wiki/File:Escher,_Regular_Division_of_the_Plane_III.jpg) 

 
A regular tessellation is a tessellation made up of congruent regular polygons.  It is easy to show that 
only three regular tessellations exist: those made up of equilateral triangles, squares, and hexagons.  
 

http://upload.wikimedia.org/wikipedia/en/9/96/Escher,_Regular_Division_of_the_Plane_III.jpg


Now which one of these tessellations is the most efficient one, that is, for a given fixed perimeter, which 
one of the above figures encloses the maximum area?  The answer turns out to be the hexagon: if a 

fixed number of   units is given as the perimeter, the area of the equilateral triangle will be 
√ 

   
  , the 

area of the square will be 
 

   
  , and the area of the regular hexagon will be 

√ 

   
  .  Hence, roughly 

speaking, if we are given 1 unit of material to form the perimeter, the triangle will cover an area of 
0.0481 square units, the square 0.0625 square units, and the hexagon 0.0722 square units.  Thus, when 
bees form hexagonal cells to build their hives, they are using the minimum amount of material to 
enclose maximum amount of area. 
  
As for some simple problems leading into serious mathematics, one such problem I was exposed to was 
the famous Bridges of Köngisberg problem and the Swiss mathematician Leonhard Euler’s (1707-1783) 
brilliant solution of it.  The city of Königsberg (now Kaliningrad) was set on both sides of the Pregel River 
with two islands in the middle.  The two sides of the town and the two islands on the river were 
connected to each other by seven bridges.  There was, in the local culture, a perplexingly simple query 
that the townspeople had not been able to answer for centuries:  is it possible to walk through the city 
by crossing each bridge once and only once?  This problem became known to Euler, who had stopped in 
the town on his way to his new teaching post in St. Petersburg, Russia, from his native Basel.  Before 
long, Euler proved that the answer was “no”.  
 

 
 

The Bridges of Köngisberg (Konigsberg_bridges.png) 
 
 
 
He did so by formulating the question in an abstract setting (hence laying the foundations of modern 
graph theory), and by showing that this walk would have been possible if and only if each vertex (land 
mass) had an even order, in other words, if and only if each vertex was connected to each other vertex 
by an even number of edges (bridges) as depicted below:  
 
 



 
 

 
Euler’s imposing and exciting solution was published as Solutio problematis ad geometriam situs 
pertinentis (The solution of a problem relating to the geometry of position) in 1741.  
 
The French/Algerian author and philosopher Albert Camus (1913-1960) once wrote “A man's work is 
nothing but this slow trek to rediscover, through the detours of art, those two or three great and simple 
images in whose presence his heart first opened.”  Indeed, this picture remained with me throughout 
my college years. 
 
Another such remarkable problem was the one that inspired the development of mathematical 
probability in Renaissance Europe.  Two players, both of whom start a game with an equal chance to win 
and the same amount of money,    are interrupted while playing the game.  Given the score of the game 
at that point, how should the total amount of    be divided?  
 
This ostensibly mundane and undemanding question started a long correspondence between two 
prominent French mathematicians of the period, Blaise Pascal (1623-1662) and Pierre de Fermat (1601-
1665) that heralded the beginnings of mathematical probability.  Roughly, here was the ensuing 
argument.   
 
Suppose the game is one of flipping coins.  If the outcome is heads (H), player A gets a point, and if it is 
tails (T), player B gets a point.  The first player to get 10 points wins the game, and the winner takes all.    
At some stage of the game, when A was ahead 8 points to 7, the game was unavoidably interrupted, and 
one of the players had to leave right away.  How should the stakes be divided? 
 
Since A needed only two points to win the game and B three, after four more tosses of the coin, the 
game would have been over, for there can be no combination of four outcomes that does not contain 
either two H’s or three T’s, which can easily be shown by observing the 16 such possible outcomes:   
 

HHHH, HHHT, HHTH, HHTT, HTHH, HTHT, … , TTTT 

Assuming all these outcomes are equally likely, since there are 11 cases where two H’s precede three T’s 
(the only ways B can win are TTTT, TTTH, TTHT, THTT, and HTTT), the ratio of A’s chance of winning to 
B’s chance of winning is 11: 5 and the total amount of money on the table,   , should be divided in that 

ratio,  giving A  
  

  
        

   

 
  and  B 

 

  
     

  

 
 .  So, for example, if each player started the game 

with 40 dollars, A would end up with 55 dollars and B with 25.  
 
I studied mathematics at Bosphorus University, Istanbul, with a minor in physics.  Then I started working 
on my M.S. at the University of Istanbul.  At the time, having read A Mathematician’s Apology, a 1940 
essay by the famous English mathematician G. H. Hardy (1877-1947) - possibly the best apology ever 
written short of the Socratic one - I had acquired a predilection for abstract theoretical mathematics, 
especially, number theory.  So for my M.S. thesis, I worked on a remarkable problem in number theory.   
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In 1770, the English mathematician Edward Waring (1736-1798) came up with  the following conjecture:  
For every natural number   there exists an associated natural number   such that every natural 

number   can be written as the sum of at most       powers of natural numbers, that is, 
 

    
     

        
  

 
where            are natural numbers and   and   are independent of  .  This claim got to be known 
as the Waring Conjecture.   
 
Some individual cases were proved early on.  For example, the French/Italian mathematician Joseph 
Louis Lagrange (1736-1813) showed in 1770 that every natural number could be written as the sum of 4 
squares (Lagrange’s four-square theorem).  Later it was shown that any natural number could be written 
as the sum of 9 cubes and 19 fourth powers.  The general case was proved by the German 
mathematician David Hilbert (1862-1943) in 1909.  Then on, this result was referred to as the Hilbert–
Waring Theorem.  Hilbert’s proof was heavily dependent on complex analysis.  My goal was to simplify 
Hilbert’s “complex” approach. 
 
I completed further graduate studies at the University of South Carolina, Columbia, S.C.    Meanwhile, 
my fascination in surprisingly elegant and inherently indispensable relationships between theoretical 
mathematics and applied sciences - the astonishing utility and splendor of mathematics - kept on 
growing.  For instance, how could one fail to be impressed by the use of regular polyhedra (the Platonic 
solids) in Keplerian cosmology?  
 

 
 

The Five Platonic Solids 
 
In his famous book Mysterium Cosmographicum, published in 1596, the German mathematician and 
astronomer Joahnnes Kepler (1571-1630) sought a relation between the five planets known at that time 
besides the Earth (Mercury, Venus, Mars, Jupiter, Saturn) and the five Platonic solids.  The solids were 
ordered with the innermost being the octahedron, followed by the icosahedron, the dodecahedron, the 
tetrahedron, and finally the cube.  In this way the structure of the solar system and the distance 
relationships between the planets was dictated by the Platonic solids.   
 
Eventually, this idea had to be discarded, but out of this exploration came the deduction that the orbits 
of the planets were ellipses rather than circles.   
 



Or, how could one not be astounded by the use of fractal geometry to measure the coastline of 
England?  Fractals, of course, (the term fractal was coined by Benoît Mandelbrot (1924 - ) in 1975 from 
the Latin fractus meaning broken) are geometric objects too irregular to be described in traditional 
Euclidean geometric terminology.  They are much better suited than regular geometric figures to depict 
entities commonly found in nature, such as clouds, snowflakes, and coastlines, as well as blood and 
pulmonary vessels.  
 
Fractals have several interesting properties.  One such is the property of self-similarity: a fractal can be 
split into smaller and smaller parts, each of which is similar or approximately similar to the original.  For 
example, starting with an equilateral triangle, removing the middle third of each side and building an 
equilateral triangle at that location, we get a fractal called the Koch snowflake, described by the Swedish 
mathematician Helge von Koch (1870-1924) in 1904: 
 
 

 
 

Koch Snowflake (http://mathworld.wolfram,com/Kochsnowflake.html) 
 
Another interesting property is that fractal dimensions (Hausdorff dimension) are not natural numbers.  
Here are pictures of some well-known fractals:  
 

1. The Mandelbrot Set 
 

 
 
 
 

http://en.wikipedia.org/wiki/File:Mandelbrot-similar-x1.jpg


 
 

 

 
The Mandelbrot set and its magnifications (http://en.wikipedia.org/wiki/File:mandelbrot_set) 

 
 

2.  The Julia Set 
 
 

 
 
A Julia Set is a fractal related to the Mandelbrot set (http://en.wikipedia.org/wiki/File:julia_set).  It was 

introduced into mathematical literature by the French mathematician Gaston Julia (1893-1978)  
 

http://en.wikipedia.org/wiki/File:julia_set
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Or take the Fibonacci numbers (Fibonacci (son of Bonacci) was the nickname for the Italian 
mathematician Leonardo da Pisa (c. 1170 – c. 1250)).  In his 1202 book Liber Abaci, Fibonacci posed the 
following question:  Suppose at the beginning of the year, we have a newly-born pair of rabbits, a male 
and a female.  Assume moreover, that these rabbits do not die for the year and that they always 
produce one new pair (one male, one female) every month from the second month on.  How many pairs 
will there be at the end of the year? 
 
 

 
 

A page from Liber Abaci (http://www.comune.genoa.it/servlets/resources?resourceId=701894) 
 
Clearly, at the end of the first month, there would still be only one pair, at the end of the second month 
there would be two pairs, and so on, giving the sequence  
 

                               
 

If we let the number in the     month be denoted by   , the solution can, obviously, be written in terms 
of the recursive definition 
 

                            
 
Generalizing the above formula, we get the infinite sequence 
 

                                                      
 



This is the sequence referred to as the Fibonacci sequence.  On many plants, the number of petals is a 
Fibonacci number: buttercups have 5 petals; daisies can be found with 34, 55, and 89 petals. 
 
Here is a geometric portrayal of the Fibonacci numbers.  Start with two small squares of size 1 next to 
each other.  On top of both of these draw a square of size 2 (= 1+1).  Now draw a new square - touching 
both one of the unit squares and the square of side 2 - thus having sides 3 units long; and so on.  The 
resulting set of rectangles will have sides that are two successive Fibonacci numbers in length. 
 
 
 
 
 
 
 
 
 
 
 
Now if we construct an approximate spiral (logarithmic spiral) drawn in the squares, we will get the 
following figure 
 
 
 
 
 
 
 
 
 
 
which is the shape of the spirals observed on the shells of snails, sea shells,  pine cones, and in the 
arrangement of seeds on flowering plants.   
 
Indeed this curve fascinated mathematicians throughout centuries.  Jakob Bernoulli referred to it as the 
spira mirabilis, the miraculous spiral.  It has the peculiar property that its size increases but its shape 
remains unaltered.  It is possibly because of this property that it appears in the growth pattern of certain 
natural objects.       
 
The equation of this rather complicated curve can be written parametrically as  
 

              
              

 
where   and   are two real constants. 
  
Closely related to the Fibonacci numbers are the Lucas numbers, introduced by the French 
mathematician François Éduard Anatole Lucas (1842-1891).  If instead of taking 1 and 1 as our initial 



values, we take two arbitrary numbers, say           we get a sequence of numbers known as the Lucas 
numbers,    defined by the recurrence relation 
 

                            
 
yielding the infinite sequence 
 

                             
 
It is easy to see that  
 

             
 
 
There is yet another interesting property of the Fibonacci numbers.  If we take the ratio of two 
successive numbers in this series, we get  
 

 

 
   

 

 
      

 

 
        

 

 
           

 

 
        

  

 
           

  

  
           

 

 
  

  
              

  

  
          

  

  
           

   

  
          

 
 
It can be shown that  

      
    

  
 

  √ 

 
               . 

 
 
In fact, in 1842, French mathematician Jacques Philippe Marie Binet (1786-1856) proved that  
 

    
        

√ 
 

 
This number   is called the golden ratio (from the Latin aurea section, the golden section) or the divine 
ratio (from the Latin sectio divina, the divine section).  It arises naturally in some partition problems.  For 
instance, suppose a rod of length   is to be divided into two unequal parts in as much pleasant a way as 
possible. This would entail the ratio of the shorter part to the longer part to be equal to the ratio of the 
longer part to the whole.  So, if   denotes the shorter part and   the longer part, we should have 
 

 

 
 

 

 
 

 

   
 

 

giving us the quadratic equation,            .    But this implies 
 

 
  

   √ 

 
 , and since the ratio of 

lengths cannot be negative, we must have 
 

 

 
 

  √ 

 
    



 
It clearly follows that  

 

 
     

 
It is also easy to see that   is irrational.  For if   were rational, then by closure properties of the rational 

numbers,      √  would be rational, a contradiction. 
 
One of the earliest works on the golden ratio was the De Divina Proportione by the Italian 
mathematician and Franciscan friar Luca Pacioli (1446-1517), a three-volume work published in 1509.  
What makes this book so historically valuable is that the illustrations of regular solids in it were made by 
none other than Leonardo da Vinci (1452-1519), Pacioli’s longtime friend and collaborator. 
 
The golden ratio has been used extensively in the arts.  For example, in da Vinci’s 1487 drawing, 
Vitruvian Man, where a nude male figure is depicted in two superimposed positions inscribed in a circle 
and square, and the proportions of the circle and square reflect, approximately, the golden ratio. 
  

 
 

The Vitruvian Man (nowarchy.blogspot.com/2009/05/vitruvian-man-real-davinci-code.html) 
 
 
 



In the Spanish/Catalan surrealist painter Salvador Dali’s (1904 – 1989) The Last Supper, the dimensions 
of the canvas are those of a golden rectangle.   The huge dodecahedron that is suspended above and 
behind Jesus has edges that are in golden ratio to one another.   

 
The Last Supper (piccolo.rispostesenzadomanda.com/post/117427563/hessianonulo-bluesiren-the-last) 

 
 
 
The Dutch Neo-Plasticist painter Piet Mondrian (1872 – 1944) used the golden section extensively in his 
geometrical paintings.  For example, this is clearly seen in his Composition in Red, Yellow, and Blue:  
 



 

 

Piet Mondrian, Composition in Red, Yellow, and Blue 
(http://fotogenetic.dearingfilm.com/golden_rectangle.html) 

 
 
The Swiss French architect and designer Le Corbusier (1887 – 1965) centered his design philosophy on 
systems of harmony and proportion and a mathematical order of the universe, and his buildings were 
closely bound to the golden ratio and the Fibonacci series.     
 
Fibonacci numbers and the golden ratio can also be found in music.  The number of measures in certain 
sections of works of Johann Sebastian Bach (1685 - 1750) and Frédéric Chopin (1810 – 1849) are based 
on the golden ratio.  In the Hungarian composer Béla Bartók’s (1881 – 1945) Music for Strings, 
Percussion, and Celesta, the xylophone progression occurs at the intervals given by the Fibonacci 
numbers.  In Claude Debussy’s (1862 – 1918) Reflets dans l’Eau (Reflections on Water), the golden ratio 
is used to organize the sections in the music.  
 
Or take Georg Cantor’s (1845-1918) theory of infinity and transfinite numbers.  As David Hilbert said, 
“No other question has ever moved so profoundly the spirit of man” as the quest to understand infinity.  
Many paradoxes arose even when the most accomplished mathematicians tried to work with this 
concept.  Galileo (1564 – 1642) aptly noted that these paradoxes were a result of our attempting “…with 
our finite minds, to discuss the infinite, assigning to it those properties which we give to the finite and 
limited… “ - like claiming that the whole is always strictly greater than its parts. 
 
Prior to Cantor’s work, the concept of set was a rather elementary one that had remained relatively 
unchanged from the time of Greek mathematicians and reflected nothing more than the antiquated 
ideas of Aristotle (384 B.C.E. – 322 B.C.E.).  There were only finite sets, for infinite sets were considered 
to belong more to the realm of philosophy than that of mathematics.   
 



Cantor started out with the simple idea of bijection in set theory.  A bijection is a function   from a set   
to a set  , such that, for every y in Y, there is exactly one   in   with the property that         (that 
is,   is an injection), and no unmapped element exists in   (that is,   is also a surjection).   
 
He used this concept to “count” the number of elements in a set, and eventually, to demarcate the 
difference between finite and infinite sets.  The cardinality of a finite set            is the number of 
elements of the set.  For example, if               , then             Thus,           means 
there exists an bijection between             and     Infinite sets were those sets for which no 
bijection to a finite set could be found.  Infinite sets were still divided into two types: denumerable (or 
countably infinite), sets from which a bijection to the set of natural numbers existed, and 
nondenumerable, those that could not be put in a one-to-one correspondence with the set of natural 
numbers.   
 
Cantor then introduced the concept of the power set of a set A, the set of all possible subsets of A, and 
showed that no set can be put into one-to-one correspondence with its power set (Cantor’s Theorem).    
 
This ended up establishing a very bizarre conclusion (Cantor’s Theorem): the set of real numbers was 
"more numerous" (had greater power - mächtigkeit) than the set of integers.  So if, following Cantor, we 
denote the cardinality of integers (or of the natural numbers or of the rational numbers) by    (aleph-
null) and the cardinality of the set of real numbers by  , we have     . 
 
In fact, Cantor’s Theorem implied that there was a well-ordered infinite set of cardinal numbers  
 

                
i.e., there were infinitely many infinities.   
 
Cantor's theory, which is now a well-established part of mathematics, encountered intense antagonism 
from his contemporaries, such as Leopold Krönecker (1823 – 1891), who called him a “charlatan,” and 
Jules Henri Poincaré (1854 -1912).  Some theologians saw Cantor’s work as a challenge to absolute 
infinity, i.e., to the true nature of God.  Indeed, Cantor’s recurring attacks of depression have been 
blamed on such hostile attitudes.  Even death did not fully absolve him.  The twentieth century 
philosopher Ludwig Wittgenstein (1889 – 1951) referred to Cantor’s theory of infinity as “utter 
nonsense” and “laughable.”    
 
There is a very interesting question related to Cantor’s theory, namely, the continuum hypothesis.  It 
asserts that there is no set whose power is greater than that of the integers and less than that of the 
real numbers; that is, there is no cardinal between         .  Cantor tried, in vain, for many years to 
prove it.  Later, David Hilbert proposed this as the first problem of his Twenty-three Open Problems in 
his famous 1900 address at the International Congress of Mathematicians in Paris.  A 1940 theorem of 
Kurt Gödel (1906 – 1978) and a 1963 theorem of Paul Cohen (1934 – 2007) together imply that the 
continuum hypothesis can neither be proved nor disproved using standard set theory axioms.  So there 
are mathematical statements that can neither be proved nor disproved.  

 
I wanted to be able to communicate these superb and brilliant ideas and theories to others the best way 
I could.  I wanted to find better ways of exposing my students to problems and questions rather than to 
already complete pieces of information and simple answers.  I wanted them to appreciate that the role 
played by imagination was equally important in mathematics as the role played by proofs and deductive 
reasoning.  I wanted, to paraphrase Albert Einstein (1879 – 1955), “to awaken joy in creative expression 



and knowledge”.  Thus, I decided to obtain a degree in Mathematics Education as well.  I started the 
doctoral program in Mathematics Education at the Department of Mathematics and Statistics of 
American University in 2003.  I completed my studies in May 2008.  My dissertation was titled Study of 
Instantaneous Rate of Change in a Historical Context. 
 
This study was essentially comprised of four parts.  The primary purpose of the first part was to analyze 
the historical development of the concept of instantaneous rate of change, determine, in particular, the 
reasons for its comparatively late induction into the realm of natural sciences, and explore the uniquely 
significant role it has played in transforming mathematics as well as physics into their modern forms.  
The second part was devoted to the development of various learning models as applied to mathematics.  
In the third part I analyzed certain issues concerning foundations of mathematics and their impact on 
mathematics education.  Finally, I expounded on how a well-designed assortment of the historic 
development of the notion of instantaneous rate of change, a suitable pedagogical model, and a correct 
philosophical foundational approach would elucidate certain fundamental concepts in geometry, 
algebra, and calculus; enrich students’ understanding and appreciation of mathematics; and alter the 
common misperception that mathematics is merely a list of facts, by engendering a viable alternative to 
the usual prosaic teaching styles associated with these topics.    
 
A Short Reading List 
Any serious student of mathematical sciences should take to heart Sir Isaac Newton’s (1642 – 1726) 
modest motto: “If I have seen further it is only by standing on the shoulders of giants,” and read the 
original works of giants.   
 
At minimum, this reading list should start with Elements, the monumental work of Euclid of Alexandria 
(c. 300 B.C.E. - ?)   

 
 

Title page of Sir Henry Billingsley's (? – 1606) first English version of Euclid's Elements, 1570 
 
 
In this book, based on five postulates  
 

1. Any two points can be connected by one and only one straight line segment 

http://commons.wikimedia.org/wiki/File:Thomas-Stanford_Plate10.jpg


2. Any line segment can be extended to a line 
3. Given any point and any line segment starting at that point, there is a circle with that point as its 

center and that segment as its radius 
4. All right angles are equal 
5. Given a line L and a point P not on L, there is one and only one line through P that never meets 

L.   
Euclid was able to establish a geometry, that was the .  (?) 
 
By reading excerpts of Archimedes’s (c. 287 B.C.E. – c. 212 B.C.E.) Method, the student should be able to 
understand what made him request the following figure to be inscribed on his tombstone 
 
 
                
 
 
 
 
 
 
 
 
 

Archimedes’s Tombstone - a sphere inscribed in a cylinder 
 

 
Archimedes had computed the ratio of their volumes, and this was one of his favorite results.  The 
computation goes as follows: if the radius of the sphere is  , the radius of the cylinder would also be   
and its height,   .  Thus, the volume of the sphere would be 
 

   
 

 
     

 
and the volume of the cylinder would be 
 

                 
 
Hence,  

  
  

 
 

 
 

 
the ratio Archimedes was so proud of.  
 
One mathematician that fascinated me the most was Sir Isaac Newton.  Before Newton, argumentum 
ad verecundiam (argument to respect), that is, an argument of the type 
 

1. Source   says that statement   is true. 
2. Source   is authoritative. 
3. Therefore, statement   is true. 



 
was a very common practice in the sciences, and in most cases the authority was Aristotle.  Newton, the 
true modernist he was, had indicated his dissatisfaction with this methodology in his Quaestiones 
Quaedam Philosophicae [Certain Philosophical Questions] (c. 1664)  
 

Amicus Plato, amicus Aristoteles, magis amica veritas 
 
(Plato is my friend, Aristotle is my friend, but my greatest friend is truth). 
 
That is why I feel Newton’s Philosophiæ Naturalis Principia Mathematica (Mathematical Principles of 
Natural Philosophy), a work in three volumes, where modern day calculus and classical mechanics were 
established, should be in everyone’s reading list.   
 
Principia was first published in July of 1687.   Within the next 40 years Newton published two further 
editions, concluding the last edition by the now famous expression “Hypotheses non fingo” (I feign no 
hypotheses). 
 
In this book, besides many other novel results, Newton stated his Laws of Motion, thus forming the 
foundation of classical mechanics, established his Law of Universal Gravitation, and derived Kepler’s 
laws of planetary motion, which, up to that time, had existed only on an empirical level.   
 
 
 

 
 

Title page of Philosophiæ Naturalis Principia Mathematica (First edition - 1687) 
 
Although the precise language of modern calculus was largely absent from the Principia - Newton gave 
most of his proofs using limits of ratios of vanishing small geometric quantities - it is still considered to 
be one of the most important works in the history of sciences.  The French mathematician Alexis Clairaut 
(1713 – 1765) in his paper Du systeme du monde, dans les principes de la gravitation universelle, which 
was published in Histoires et Memoires de l'Academie Royale des Sciences in 1749,  wrote that Principia  
 

… spread the light of mathematics on a science [physics] which up to then had remained 
in the darkness of conjectures and hypotheses.   

http://en.wikipedia.org/wiki/File:Prinicipia-title.png


 
It is easy to miss the dynamic and humanistic nature of mathematical sciences and to reduce them to a 
series of definitions, axioms, and theorems devoid of any historic or cultural context, often promulgated 
by rather diffident introverts.  To those who may claim mathematics is static or that mathematics has 
not undergone any revolutionary changes like the other sciences, I counter with non-Euclidean 
geometries.  All of these geometries are based on the first four of Euclid’s postulates, but each uses its 
own version of the fifth postulate.  In one case, there are no lines parallel to a given line from a point not 
on the line, and in the other case, there are infinitely many.  In 1868 the Italian mathematician Eugenio 
Beltrami (1835 – 1900) proved that non-Euclidean geometries were as logically consistent as their 
Euclidean counterpart. 
 
To expose the inherent limitations of the thought system that claims all of mathematics can be studied 
through an axiomatic approach, I offer The Incompleteness Theorems, proven by Kurt Gödel in 1931.  
They state that any consistent system of axioms is incapable of proving certain truths about arithmetic.  
This result has shown that Hilbert’s program of finding a complete and consistent set of axioms for all of 
mathematics is impossible. 
 
To those who claim problems that sound simple must have simple solutions, I will give them three 
problems and actually help with the solutions of the first two.  For the third, they are on their own. 
 

1. Why is a writer’s life complex?   
 
 

2. Which type of numbers are best for you health?  
 
 

3. Show that any even number can be written as a sum of two prime numbers.  For example, 
                       
 
This question, known as the Goldbach conjecture, was proposed in 1742 by the Prussian 
mathematician Christian Goldbach (1690 – 1764) in a letter to Euler 



   
 

Goldbach’s Letter to Euler 
(http://upload.wikimedia.org/wikipedia/commons/thumb/1/18/Letter_Goldbaxh-Euler.jpg/400px.l) 
 

 
Answers 
  

1. Because it has both real and imaginary parts. 
2. Natural numbers. 

 
And finally to those who harbor a bit of a sense of humor, I have some good news - they can prove 
theorems as utterly expedient as the following one:  
 
 



Theorem. Death comes to no man. 
 
Proof.  As is well known, when we approach death our whole life flashes in front of us.  In order to be 
complete, this synopsis must also include the moment we approached death and the flashback of our 
life.  But then there has to be another flashback of our life, including the moment we had the previous 
flashback, and so on, ad infinitum.  Hence, although we may approach death, we will never actually 
reach it (Leinbach’s Proof). 


